Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce
نویسندگان
چکیده
BACKGROUND The recalcitrance of softwood to enzymatic hydrolysis is one of the major bottlenecks hindering its profitable use as a raw material for platform sugars. In softwood, the guaiacyl-type lignin is especially problematic, since it is known to bind hydrolytic enzymes non-specifically, rendering them inactive towards cellulose. One approach to improve hydrolysis yields is the modification of lignin and of cellulose structures by laccase-mediator treatments (LMTs). RESULTS LMTs were studied to improve the hydrolysis of steam pre-treated spruce (SPS). Three mediators with three distinct reaction mechanisms (ABTS, HBT, and TEMPO) and one natural mediator (AS, that is, acetosyringone) were tested. Of the studied LMTs, laccase-ABTS treatment improved the degree of hydrolysis by 54%, while acetosyringone and TEMPO increased the hydrolysis yield by 49% and 36%, respectively. On the other hand, laccase-HBT treatment improved the degree of hydrolysis only by 22%, which was in the same order of magnitude as the increase induced by laccase treatment without added mediators (19%). The improvements were due to lignin modification that led to reduced adsorption of endoglucanase Cel5A and cellobiohydrolase Cel7A on lignin. TEMPO was the only mediator that modified cellulose structure by oxidizing hydroxyls at the C6 position to carbonyls and partially further to carboxyls. Oxidation of the reducing end C1 carbonyls was also observed. In contrast to lignin modification, oxidation of cellulose impaired enzymatic hydrolysis. CONCLUSIONS LMTs, in general, improved the enzymatic hydrolysis of SPS. The mechanism of the improvement was shown to be based on reduced adsorption of the main cellulases on SPS lignin rather than cellulose oxidation. In fact, at higher mediator concentrations the advantage of lignin modification in enzymatic saccharification was overcome by the negative effect of cellulose oxidation. For future applications, it would be beneficial to be able to understand and modify the binding properties of lignin in order to decrease unspecific enzyme binding and thus to increase the mobility, action, and recyclability of the hydrolytic enzymes.
منابع مشابه
Structural Analysis of Fast-Growing Aspen Alkaline Peroxide Mechanical Pulp Lignin: A Post-Enzymatic Treatment
An enzymatic mild acidic hydrolysis was used to separate and purify residual lignin from alkaline peroxide mechanical pulp (APMP). Using the optimum conditions for the laccase treatment (pH 4.5, temperature 50 °C, lignin consistency of 1%, a reaction time of 60 min, and a laccase dosage of 8 μ/g), oven-dried lignin was treated with laccase and in a laccase mediator system (LMS) to explore the m...
متن کاملUnderstanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes.
The effects and mechanism of pulp delignification by laccases in the presence of redox mediators have been investigated on unbleached eucalyptus kraft pulp treated with laccases from Pycnoporus cinnabarinus (PcL) and Myceliophthora thermophila (MtL) and 1-hydroxybenzotriazole (HBT) and methyl syringate (MeS) as mediators, respectively. Determination of the corrected κ number in eucalyptus pulps...
متن کاملPretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock
BACKGROUND Biofuel production from lignocellulosic material is hampered by biomass recalcitrance towards enzymatic hydrolysis due to the compact architecture of the plant cell wall and the presence of lignin. The purpose of this work is to study the ability of an industrially available laccase-mediator system to modify and remove lignin during pretreatment of wood (Eucalyptus globulus) feedstoc...
متن کاملEnzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi.
Wheat straw was submitted to a pre-treatment by the basidiomycetous fungi Euc-1 and Irpex lacteus, aiming to improve the accessibility of cellulose towards enzymatic hydrolysis via previous selective bio-delignification. This allowed the increase of substrate saccharification nearly four and three times while applying the basidiomycetes Euc-1 and I. lacteus, respectively. The cellulose/lignin r...
متن کاملComparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production
BACKGROUND Bacterial cellulose (BC) is a nanostructured material with unique properties and wide applicability. In order to decrease the production cost of bacterial cellulose, lignocellulose-based media have considerable potential as alternative cost-effective feedstocks. However, pretreatment and enzymatic hydrolysis of lignocellulose to sugars also generate fermentation inhibitors. Detoxific...
متن کامل